Seasonal Regulation of Petal Number1[OPEN]

نویسندگان

  • Sarah M. McKim
  • Anne-Lise Routier-Kierzkowska
  • Marie Monniaux
  • Daniel Kierzkowski
  • Bjorn Pieper
  • Richard S. Smith
  • Miltos Tsiantis
  • Angela Hay
چکیده

Four petals characterize the flowers of most species in the Brassicaceae family, and this phenotype is generally robust to genetic and environmental variation. A variable petal number distinguishes the flowers of Cardamine hirsuta from those of its close relative Arabidopsis (Arabidopsis thaliana), and allelic variation at many loci contribute to this trait. However, it is less clear whether C. hirsuta petal number varies in response to seasonal changes in environment. To address this question, we assessed whether petal number responds to a suite of environmental and endogenous cues that regulate flowering time in C. hirsuta. We found that petal number showed seasonal variation in C. hirsuta, such that spring flowering plants developed more petals than those flowering in summer. Conditions associated with spring flowering, including cool ambient temperature, short photoperiod, and vernalization, all increased petal number in C. hirsuta. Cool temperature caused the strongest increase in petal number and lengthened the time interval over which floral meristems matured. We performed live imaging of early flower development and showed that floral buds developed more slowly at 15°C versus 20°C. This extended phase of floral meristem formation, coupled with slower growth of sepals at 15°C, produced larger intersepal regions with more space available for petal initiation. In summary, the growth and maturation of floral buds is associated with variable petal number in C. hirsuta and responds to seasonal changes in ambient temperature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RABBIT EARS regulates the transcription of TCP4 during petal development in Arabidopsis

Plant organ growth requires the proper transition from cell proliferation to cell expansion and differentiation. The CIN-TCP transcription factor gene TCP4 and its post-transcriptional regulator microRNA319 play a pivotal role in this process. In this study, we identified a pathway in which the product of the C2H2 zinc finger gene RABBIT EARS (RBE) regulates the transcription of TCP4 during Ara...

متن کامل

Transcriptomic insights into antagonistic effects of gibberellin and abscisic acid on petal growth in Gerbera hybrida

Petal growth is central to floral morphogenesis, but the underlying genetic basis of petal growth regulation is yet to be elucidated. In this study, we found that the basal region of the ray floret petals of Gerbera hybrida was the most sensitive to treatment with the phytohormones gibberellin (GA) and abscisic acid (ABA), which regulate cell expansion during petal growth in an antagonistic man...

متن کامل

Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida

Gerbera hybrida is a cut-flower crop of global importance, and an understanding of the mechanisms underlying petal development is vital for the continued commercial development of this plant species. Brassinosteroids (BRs), a class of phytohormones, are known to play a major role in cell expansion, but their effect on petal growth in G. hybrida is largely unexplored. In this study, we found tha...

متن کامل

Differential expression of several xyloglucan endotransglucosylase/hydrolase genes regulates flower opening and petal abscission in roses

Flower opening is a process that requires movement of petals from a closed position to a horizontal open position, while petal abscission requires cell-wall disassembly. Both processes are controlled by ethylene and require cell-wall modification at the junction (abscission zone) of the petal and thalamus to facilitate the movement or separation of petals. In the present study, a family of xylo...

متن کامل

Characterization of antirrhinum petal development and identification of target genes of the class B MADS box gene DEFICIENS.

The class B MADS box transcription factors DEFICIENS (DEF) and GLOBOSA (GLO) of Antirrhinum majus together control the organogenesis of petals and stamens. Toward an understanding of how the downstream molecular mechanisms controlled by DEF contribute to petal organogenesis, we conducted expression profiling experiments using macroarrays comprising >11,600 annotated Antirrhinum unigenes. First,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017